

Instalacja &

Instrukcja obsługi

Pobierać ^{Podręcznik}

Shenzhen Growatt New Energy Co., Ltd 4-13/ F, Budynek A, Chińsko-Niemiecki (Europa) Park Przemysłowy, Hangcheng Ave, Dzielnica Bao'an, Shenzhen, Chiny

+86 0755 2747 1942

SerwisvTVE.W@genverterrepm

GR-UM-226-A-01

Zawartość

1 Krótkie wprowadzenie	1.1 Wstęp 1.2 Grupa docelowa 1.3 Opis produktu 1.4 Instrukcje bezpieczeństwa
2 Bezpieczeństwo	2.1 Cel użytkowania 2.2 Środki bezpieczeństwa 2.3 Wprowadzenie do symboli na falowniku SPH
3 Opis produktu	3.1 Falownik serii Growatt SPH 3.2 Objaśnienie etykiety 3.3 Wymiary i waga 3.4 Zaleta urządzenia Growatt SPH
4 Rozpakowywanie	
5 Instalacja	5.1 Podstawowe wymagania instalacyjne 5.2 Instalacja wymaga narzędzi i kolejności zacisków RJ 45 linii LAN 5.3 Instrukcje instalacji 5.4 Tryb połączenia systemu SPH

------11 Wy 6 Uruchomienie 6.1 Uruchomienie SPH 6.2 Tryby pracy . 6.3 Ustawienia kraju 6.4 Wyświetlacz i przycisk 6.5 Komunikacja . -----* 12 S ----. Uruchomienie i wyłączenie 7 7.1 Uruchomienie systemu SPH н System SPH 7.2 Odłączenie systemu SPH н _____ 8 Zwróć uwagę na środowisko instalacji, 13 Cei konserwację i czyszczenie 9 Usuwanie usterek 14 Ko 10 Deklaracja zgodności UE

rcofanie ze służby	11.1 Demontaż magazynu energii 11.2 Pakowanie falownika SPH 11.3 Przechowywanie falownika SPH 11.4 Utylizacja falownika SPH
pecyfikacja produktu	12.1 Specyfikacja produktu maszyny do magazynowania energii serii Growatt SPH 12.2 Parametr zacisku wejściowego DC 12.3 Moment obrotowy 12.4 Załącznik
rtyfikat	
ntakt	

1 Krótkie wprowadzenie

1.1 Wstęp

Niniejsza instrukcja ma na celu dostarczenie użytkownikom korzystającym z serii Growatt SPH TL3 BH-UP firmy Shenzhen Growatt New Energy Technology Co.,LTD (skrót od Growatt, jak poniżej) szczegółowych informacji o produkcie i instrukcji instalacji. Przeczytaj uważnie tę instrukcję i umieść ją w miejscu, w którym będzie dogodnie dostępna do instalacji, obsługi i uzyskania. Nie powiadomimy użytkownika o żadnych modyfikacjach Growatt new energy.

Przegląd:

Pozycja

R

S

Т

Wykres 1.1

Opis

	A	Dioda LED wyświetlacza statusu
	В	Ekran LCD
	С	Przycisk funkcyjny
	D	Punkt uziemienia
	I	Zawór oddychający
	F	Wyjście EPS (połączenie poza siecią)
n	G	RSD (nie otwierać, jeśli nie zrobi tego personel)
	н	Sieć AC (po podłączeniu do sieci)
	I	Interfejs komunikacyjny Rs485 (zarezerwowany)
	J	Interfejs komunikacyjny Rs485 miernika 2 (zarezerwowany)
	К	NTC: Zacisk czujnika temperatury kwasu ołowiowego
	L	Interfejs RJ45 DRM (stosowany tylko w Australii)
	М	Interfejs komunikacyjny Rs485 licznika 1
	N	Interfejs komunikacyjny CAN baterii litowej
	то	Interfejs USB
	Р	Przełącznik PV
	Q	Wejście PV

Zacisk akumulatora

Interfejs komunikacyjny Rs485 miernika 2 (zarezerwowany)

Kontakt suchy

1.2 Grupa docelowa

Falownik Growatt SPH TL3 BH+musi być instalowany przez profesjonalny personel elektryczny, który uzyskał certyfikację odpowiednich departamentów. Mamy dwa rodzaje maszyn do magazynowania energii dla różnych akumulatorów, jeden jest dla akumulatorów litowych, a drugi dla akumulatorów kwasowo-ołowiowych, sugerujemy: klient powinien zdecydować, jaki rodzaj maszyny do magazynowania energii chce, Growatt może dostarczyć tylko akumulator litowy z maszyną do magazynowania energii, klient może wybrać maszynę do magazynowania energii kwasowo-ołowiowej bez akumulatora dostarczanego przez Growatt, podczas gdy może łatwo kupić te akumulatory na rynku. Zwłaszcza jeśli klient wybierze system magazynowania energii z akumulatorem litowym (który musi być dostarczony przez Growatt), ale używany do akumulatora kwasowo-ołowiowego lub używany akumulator kwasowo-ołowiowy dla modelu akumulatora litowego, będzie to niebezpieczne. Instalator może szybko zainstalować urządzenie do magazynowania energii serii Growatt SPH TL3 BH-UP i rozwiązywać problemy, a także zbudować system komunikacyjny, uważnie czytając tę instrukcję. Jeśli pojawią się jakiekolwiek pytania dotyczące procesu instalacji, możesz zalogować się na stronie www.growatt.com i zostawić wiadomość. Możesz również zadzwonić na naszą całodobową infolinię serwisową pod numer +86 0755 2747 1942.

1.3 Opis produktu

Seria Growatt SPH TL3 BH-UP służy do magazynowania energii wytwarzanej przez panele fotowoltaiczne lub energii z sieci, jeśli pozwala na to akumulator. Energia może być również przesyłana do sieci energetycznej przez SPH TL3 BH-UP w celu własnego zużycia, a w przypadku zaniku zasilania sieciowego, SPH TL3 BH-UP może być używane jako źródło zasilania zapasowego.

Seria SPH składa się z sześciu rodzajów typów: SPH 4000TL3 BH-UP SPH 5000TL3 BH-UP SPH 6000TL3 BH-UP SPH 7000TL3 BH-UP SPH 8000TL3 BH-UP SPH 10000TL3 BH-UP Uwaga: poniżej opisujemy tę serię jako "SPH".

1.4 Instrukcje bezpieczeństwa

1. Proszę dokładnie określić, jaki rodzaj akumulatora Państwo wybierają: litowy czy kwasowo-ołowiowy. Jeśli wybiorą Państwo niewłaściwy system, SPH nie będzie mógł pracować prawidłowo.

2. Przed instalacją należy uważnie przeczytać niniejszą instrukcję. Firma zastrzega sobie prawo do odmowy zapewnienia jakości, jeśli instalacja nie będzie zgodna z instrukcjami podanymi w niniejszej instrukcji, co może spowodować uszkodzenie sprzętu.

3. Wszystkie czynności związane z obsługą i podłączaniem powinien wykonywać wykwalifikowany inżynier elektryk lub mechanik.
 4. Podczas instalacji nie dotykaj innych części wewnątrz pudełka.

5. Cała instalacja elektryczna musi być zgodna z lokalnymi normami bezpieczeństwa elektrycznego.

6. Jeśli sprzęt wymaga konserwacji, prosimy o kontakt z lokalnym personelem odpowiedzialnym za instalację i konserwację systemu.

7. W celu podłączenia sprzętu do sieci energetycznej należy uzyskać pozwolenie od lokalnego zakładu energetycznego.

8. Podczas instalacji modułów fotowoltaicznych w ciągu dnia należy wyłączyć przełącznik PV. W przeciwnym razie może wystąpić niebezpieczeństwo wysokiego napięcia na zaciskach modułów wystawionych na działanie promieni słonecznych.

2 Bezpieczeństwo

2.1 Cel użytkowania

Schemat systemu SPH:

Falownik hybrydowy

Jak pokazano powyżej, kompletny system SPH podłączony do sieci składa się z modułów fotowoltaicznych, falownika SPH, akumulatora, sieci elektroenergetycznej i innych komponentów.

Uwaga:

Ponieważ system odnosi się do użytkowania baterii, musimy upewnić się, że wentylacja środowiska serwisowego i kontrola temperatury są zapewnione, aby zapobiec niebezpieczeństwu wybuchu baterii. Zalecane środowisko instalacji baterii musi być ściśle zgodne ze specyfikacją. Jeśli specyfikacja to środowisko IP20, stopień zanieczyszczenia urządzenia wynosi PD2, temperatura powinna być kontrolowana w zakresie 0-40 wentylacji wewnętrznej, a wilgotność powinna wynosić 5%-85%. Jeśli wybrane moduły fotowoltai€zne wymagają dodatniego lub ujemnego połączenia uziemiającego, skontaktuj się z firmą Growatt w celu uzyskania pomocy technicznej przed instalacją.

2.2 Środki bezpieczeństwa

Ryzyko wysokiego napięcia!

Operacja istotna dla personelu profesjonalnego.

Proszę zwrócić uwagę, że dzieci, niepełnosprawni, osoby świeckie nie powinny zamykać drzwi.

Nadzoruj i upewnij się, że dzieci nie bawią się w pobliżu miejsca instalacji urządzenia do magazynowania energii.

Ryzyko poparzenia częściami obudowy falownika SPH! Podczas pracy osłona, obudowa i grzejnik mogą być gorące.

Falownik SPH emituje promieniowanie, które może mieć wpływ na zdrowie! Nie należy przebywać w odległości mniejszej niż 20 cm od falownika SPH.

Podłaczenie uziemienia falownika SPH

Aby zapewnić bezpieczeństwo ludzi, należy upewnić się, że uziemienie falownika SPH jest prawidłowe.

2.3 Wprowadzenie symboli na falowniku SPH

Symbol	Opis
4	Uwaga: Ryzyko porażenia prądem!
	Uwaga: gorąca powierzchnia!

	Uwaga: ryzyko niebezpieczeństwa!
A Cismin	Zagrożenie życia wskutek występowania wysokiego napięcia w agregatach prądotwórczych. W SPH występuje napięcie szczątkowe, SPH potrzebuje 5 minut na rozładowanie. Proszę odczekać 5 minut przed otwarciem górnej pokrywy lub pokrywy DC.
	Zacisk przewodu ochronnego
	Prąd stały (DC)
\sim	Prąd przemienny (AC)
CE	Maszyna spełnia wymagania obowiązującego rozporządzenia. Wytyczne CE
i	Zapoznaj się z instrukcją obsługi.

3 Opis produktu

3.1 Falownik serii Growatt SPH

Znaki SPH

Ocena	Opis	Wyjaśnienie			
(ESC) OK	Przycisk	Obsługa ekranu wyświetlacza i systemu ustawień			
		Zielone światło włączone	SPH działa normalnie		
Normal	Symbol statusu SPH	Czerwone światło włączone	stan błędu		
Fault		Zielone światło miga	Stan alarmu		
		Migające czerwone światło	Aktualizacja oprogramowania		

3.2 Wyjaśnienie etykiety

Etykieta zawiera następujące informacje: na przykład SPH 10000TL3 BH-UP przedstawia się następująco:

PV input dataMax.PV voltage1000 d.c.VPV voltage range120-1000 d.c.VPV lsc16.9 d.c.A*2Max. input current13.5 d.c.A*2AC output/input data15000/10000 WMax. output apparent power10000 VANominal input/output current230/400 a.c.VMax. input/output current22.7/15.2 a.c.ANominal Frequency50/60 HzPower factor range0.8leading~0.8lagginStand alone data10000 WNominal AC output requency230/400 a.c.VNominal AC output power10000 WNominal AC output power230/400 a.c.VNominal AC output power230/400 a.c.VNominal AC output power230/400 a.c.VNominal AC output power230/400 a.c.VNominal AC output power20/60 HzSafetry data25 d.c.ABattery voltage range100-550 d.c.VMax. charging and discharging current25 d.c.AType of batteryLithium/Lead-acidOthersSafety levelSafety levelClass IIngress ProtectionIP65Operation Ambient remperature-25°C - +60°C	Model name	SPH 10000TL3 BH-I		
Max.PV voltage1000 d.c.VPV voltage range120-1000 d.c.VPV lsc16.9 d.c.A*2Max. input current13.5 d.c.A*2AC output/input data15000/10000 WNominal input/output power15000/10000 WMax. output apparent power10000 VANominal voltage3W/N/PE 230/400 a.c.VMax. input/output current22.7/15.2 a.c.ANominal Frequency50/60 HzPower factor range0.8leading~0.8lagginStand alone data10000 WNominal AC output requency230/400 a.c.VNominal AC output power10000 WNominal AC output requency50/60 HzBattery data100-550 d.c.VBattery voltage range100-550 d.c.VMax. charging and discharging current25 d.c.AType of batteryLithium/Lead-acidOthersSafety levelSafety levelClass IIngress ProtectionIP65Operation Ambient remperature-25°C - +60°C	PV input data			
PV voltage range120-1000 d.c.VPV lsc16.9 d.c.A*2Max. input current13.5 d.c.A*2AC output/input data15000/10000 WNominal input/output power15000/10000 WMax. output apparent power10000 VANominal voltage3W/N/PE 230/400 a.c.VNominal Frequency50/60 HzPower factor range0.8leading~0.8laggiiStand alone data10000 WNominal AC output power230/400 a.c.VNominal AC output power10000 WNominal AC output power230/400 a.c.VNominal AC output power50/60 HzBattery data50/60 HzBattery voltage range100-550 d.c.VMax. charging and discharging current25 d.c.AType of batteryLithium/Lead-acidOthersSafety levelSafety levelClass IIngress ProtectionIP65Operation Ambient remperature-25°C - +60°C	Max.PV voltage	1000 d.c.V		
PV lsc16.9 d.c.A*2Max. input current13.5 d.c.A*2AC output/input dataNominal input/output power15000/10000 WMax. output apparent power10000 VANominal voltage3W/N/PE 230/400 a.c.VMax. input/output current22.7/15.2 a.c.ANominal Frequency50/60 HzPower factor range0.8leading~0.8laggiiStand alone data10000 WNominal AC output power10000 WNominal AC output voltage230/400 a.c.VNominal AC output power50/60 HzBattery data50/60 HzBattery voltage range100-550 d.c.VMax. charging and discharging current25 d.c.AType of batteryLithium/Lead-acidOthersSafety levelClass I Ingress ProtectionIP65Operation Ambient remperature-25°C - +60°C	PV voltage range	120-1000 d.c.V		
Max. input current13.5 d.c.A*2AC output/input dataNominal input/output power15000/10000 WMax. output apparent power10000 VANominal voltage3W/N/PE 230/400 a.c.VMax. input/output current22.7/15.2 a.c.ANominal Frequency50/60 HzPower factor range0.8leading~0.8lagginStand alone data10000 WNominal AC output power10000 WNominal AC output power10000 WNominal AC output prequency50/60 HzBattery data50/60 HzBattery voltage range100-550 d.c.VMax. charging and discharging current25 d.c.AType of batteryLithium/Lead-acidOthersSafety levelSafety levelClass IIngress ProtectionIP65Operation Ambient remperature-25°C - +60°C	PV lsc	16.9 d.c.A*2		
AC output/input dataNominal input/output power15000/10000 WMax. output apparent power10000 VANominal voltage3W/N/PE 230/400 a.c.VMax. input/output current22.7/15.2 a.c.ANominal Frequency50/60 HzPower factor range0.8leading~0.8lagginStand alone data10000 WNominal AC output voltage230/400 a.c.VNominal AC output power10000 WNominal AC output power230/400 a.c.VNominal AC output power50/60 HzBattery data50/60 HzBattery voltage range100-550 d.c.VMax. charging and discharging current25 d.c.AType of batteryLithium/Lead-acidOthersSafety levelSafety levelClass IIngress ProtectionIP65Operation Ambient remperature-25°C - +60°C	Max. input current	13.5 d.c.A*2		
Nominal input/output power15000/10000 WMax. output apparent power10000 VANominal voltage3W/N/PE 230/400 a.c.VMax. input/output current22.7/15.2 a.c.ANominal Frequency50/60 HzPower factor range0.8leading~0.8lagginStand alone data10000 WNominal AC output power230/400 a.c.VNominal AC output power10000 WNominal AC output voltage230/400 a.c.VNominal AC output power50/60 HzBattery data50/60 HzBattery voltage range100-550 d.c.VMax. charging and discharging current25 d.c.AType of batteryLithium/Lead-acidOthersSafety levelSafety levelClass IIngress ProtectionIP65Operation Ambient remperature-25°C - +60°C	AC output/input data			
Max. output apparent power10000 VANominal voltage3W/N/PE 230/400 a.c.VMax. input/output current22.7/15.2 a.c.ANominal Frequency50/60 HzPower factor range0.8leading~0.8laggingStand alone data0.8leading~0.8laggingNominal AC output power10000 WNominal AC output power230/400 a.c.VNominal AC output power230/400 a.c.VNominal AC output power50/60 HzBattery data50/60 HzBattery voltage range100-550 d.c.VMax. charging and discharging current25 d.c.AType of batteryLithium/Lead-acidOthersSafety levelSafety levelClass IIngress ProtectionIP65Operation Ambient remperature-25°C - +60°C	Nominal input/output power	15000/10000 W		
Nominal voltage3W/N/PE 230/400 a.c.VMax. input/output current22.7/15.2 a.c.ANominal Frequency50/60 HzPower factor range0.8leading~0.8laggingStand alone dataNominal AC output powerNominal AC output 	Max. output apparent power	10000 VA		
Max. input/output current22.7/15.2 a.c.ANominal Frequency50/60 HzPower factor range0.8leading~0.8lagginStand alone dataNominal AC output power10000 WNominal AC output voltage230/400 a.c.VNominal AC output 	Nominal voltage	3W/N/PE 230/400 a.c.V		
Nominal Frequency50/60 HzPower factor range0.8leading~0.8lagginStand alone data	Max. input/output current	22.7/15.2 a.c.A		
Power factor range 0.8leading~0.8laggin Stand alone data	Nominal Frequency	50/60 Hz		
Stand alone data Nominal AC output power 10000 W Nominal AC output voltage 230/400 a.c.V Nominal AC output Frequency 50/60 Hz Battery data 50/60 Hz Battery data 100-550 d.c.V Max. charging and discharging current 25 d.c.A Type of battery Lithium/Lead-acid Others Safety level Safety level Class I Ingress Protection IP65 Operation Ambient Temperature -25°C - +60°C	Power factor range	0.8leading~0.8laggin		
Nominal AC output power10000 WNominal AC output voltage230/400 a.c.VNominal AC output Frequency50/60 HzBattery data50/60 HzBattery voltage range100-550 d.c.VMax. charging and discharging current25 d.c.AType of batteryLithium/Lead-acidOthersSafety levelSafety levelClass IIngress ProtectionIP65Operation Ambient Temperature-25°C - +60°C	Stand alone data			
Nominal AC output voltage230/400 a.c.VNominal AC output Frequency50/60 HzBattery data50/60 HzBattery voltage range100-550 d.c.VMax. charging and discharging current25 d.c.AType of batteryLithium/Lead-acidOthersSafety levelSafety levelClass IIngress ProtectionIP65Operation Ambient Temperature-25°C - +60°C	Nominal AC output power	10000 W		
Nominal AC output Frequency 50/60 Hz Battery data 100-550 d.c.V Battery voltage range 100-550 d.c.V Max. charging and discharging current 25 d.c.A Type of battery Lithium/Lead-acid Others Safety level Safety level Class I Ingress Protection IP65 Operation Ambient Temperature -25°C - +60°C	Nominal AC output voltage	230/400 a.c.V		
Battery data Battery voltage range 100-550 d.c.V Max. charging and discharging current 25 d.c.A Type of battery Lithium/Lead-acid Others Safety level Safety level Class I Ingress Protection IP65 Operation Ambient Temperature -25°C - +60°C	Nominal AC output Frequency	50/60 Hz		
Battery voltage range 100-550 d.c.V Max. charging and discharging current 25 d.c.A Type of battery Lithium/Lead-acid Others Safety level Safety level Class I Ingress Protection IP65 Operation Ambient -25°C - +60°C	Battery data			
Max. charging and discharging current 25 d.c.A Type of battery Lithium/Lead-acid Others Safety level Safety level Class I Ingress Protection IP65 Operation Ambient -25°C - +60°C	Battery voltage range	100-550 d.c.V		
Type of battery Lithium/Lead-acid Others Safety level Class I Ingress Protection IP65 Operation Ambient -25°C - +60°C	Max. charging and discharging current	25 d.c.A		
Others Safety level Class I Ingress Protection IP65 Operation Ambient -25°C - +60°C	Type of battery	Lithium/Lead-acid		
Safety level Class I Ingress Protection IP65 Operation Ambient -25°C - +60°C	Others			
Ingress Protection IP65 Operation Ambient -25°C - +60°C	Safety level	Class I		
Operation Ambient -25°C - +60°C	Ingress Protection	IP65		
Temperature	Operation Ambient Temperature	-25°C - +60°C		

Opis etykiety:

Rodzaj produktu	Growatt SPH 100001L3 BH-UP
Dane wejściowe PV	
Maksymalne napięcie PV	1000 V prądu stałego
Zakres napięcia PV	120~1000 V prądu stałego
PV Isc	16,9A*2
Naksymalny prąd wejściowy	13,5A*2
lane wyjściowe/wejściowe prądu przemiennego	
Maksymalna moc wyjściowa	10000 W
Maksymalna moc pozorna	10000VA
Napięcie wyjściowe znamionowe	3W/N/PE 230/400 V prądu zmiennego
Maksymalny prąd wyjściowy	15,2A
Częstotliwość znamionowa wyjściowa	50Hz/60Hz
Zakres współczynnika mocy	0,8 wyprzedzające ~ 0,8 opóźnione
Samodzielne dane	
Moc znamionowa prądu przemiennego	10000 W
Nominalne napięcie wyjściowe prądu przemiennego	230/400 V prądu zmiennego
Zzęstotliwość znamionowa wyjścia prądu przemiennego	50Hz/60Hz
Dane baterii	
Zakres napięcia akumulatora	100-550 V prądu stałego
Maksymalny prąd ładowania i rozładowania	25A
Rodzaj baterii	Litowo-/kwasowo-ołowiowy
inni	
Poziom bezpieczeństwa	Klasa I
Ochrona przed wnikaniem	IP65
Temperatura otoczenia podczas pracy	-25°C~+60°C
Numer certyfikatu	(Dla modeli australiiskich)

3.3 Rozmiar i waga

Wykres 3.1

	mm (mm)	B(mm)	cm (mm)	D (mm) waga	(kg)
Growatt SPH TL3 BH-UP	505	544	198,5	453,5	33

3.4 Zaleta jednostki Growatt SPH

Cechy poniżej: Ø Ø Ø

- Ø Wszystko w jednym projekcie. Może poprawić samokonsumpcję, cofnąć się, a także uszczypnąć dolinę.
- Ø Inteligentne zarządzanie, możliwość ustawienia trybu pracy.
 - Zastosowano bezpieczną baterię.

Łatwa instalacja.

Dwa wejścia trackera MPP.

Instalacja 5

4 Rozpakowanie i kontrola

Przed rozpakowaniem sprawdź, czy nie ma widocznych uszkodzeń zewnętrznych. Po rozpakowaniu sprawdź, czy nie ma uszkodzeń lub brakujących części, jeśli tak się stanie, skontaktuj się z dostawcą.

Seria Growatt SPH i akcesoria przedstawiają się następująco:

Wykres 4.1

Przedmiot	Numer	Opis			
А	1	Falownik SPH			
В	1	Instrukcja obsługi			
с	1	Tektura (instrukcja montażu)			
D	1	Pokrywa wodoodporna			
I	1	Złącze sieciowe AC			
F	1	Złącze wyjściowe EPS (czerwone złącze)			
G	1	Kabel komunikacyjny			
н	1	Czujnik temperatury akumulatora kwasowo-ołowiowego			
I	1	Złącze RJ45			
J	4	Śruba ustalająca M6			
К	1	Zacisk uziemiający			
L	4	Śruba ustalająca M4			
M/N	2/2	Złącze Mc4 (złącze czarne)			
O/P	1/1	Złącze Mc4 (złącze niebieskie)			
Q	1	Licznik elektryczny			

5.1 Podstawowe wymagania instalacyjne

A. Miejsce instalacji musi być odpowiednie do ciężaru urządzenia SPH przez dłuższy okres czasu. B. Miejsce instalacji musi być zgodne z wymiarami SPH.

C. Nie należy instalować urządzenia na konstrukcjach wykonanych z materiałów łatwopalnych lub termolabilnych.

D. Stopień ochrony IP65 i stopień zanieczyszczenia PD2. Zapoznaj się z poniższymi informacjami:

Wykres 5.1

E. Możliwość montażu akumulatora nie powinna znajdować się w dużej odległości od SPH, odległość między SPH a akumulatorem nie powinna być większa niż 5 m.

F. Temperatura otoczenia powinna wynosić od -25°C do 60°C.

G. SPH można zamontować w pozycji pionowej lub odchylonej do tyłu w płaszczyźnie. Zapoznaj się z poniższymi informacjami:

Wykres 5.2

H. Pozycja instalacji nie może utrudniać dostępu do środków rozłączających.

I. Aby mieć pewność, że maszyna będzie działać normalnie i będzie łatwa w obsłudze, należy zwrócić uwagę na zapewnienie odpowiedniej ilości miejsca dla SPH. Zapoznaj się z poniższymi informacjami:

Wykres 5.3

J. Nie należy instalować urządzenia w pobliżu anteny telewizyjnej lub innych anten i kabli antenowych.

K. Nie instaluj urządzenia w pomieszczeniu mieszkalnym.

L. Upewnij się, że urządzenie znajduje się poza zasięgiem dzieci.

M. Biorąc pod uwagę miejsce montażu baterii, informacje o wymiarach można znaleźć w instrukcji obsługi.

N. Łatwopalnych i wybuchowych materiałów niebezpiecznych nie wolno umieszczać w pobliżu akumulatora, gdyż mogą one stwarzać poważne zagrożenie.

5.2 Do instalacji wymagane są narzędzia oraz kolejność zacisków RJ 45 linii LAN.

Podczas instalacji musimy użyć następujących narzędzi. Przed instalacją należy przygotować następujące narzędzia:

NIE.	Opis		
1	Naciśnij zacisk RJ45		
2	Naciśnij złącze zacisku akumulatora		
3	Odłącz zacisk PV		
4	Odkręcić nakrętkę		
5	Odkręcić śrubę		
6	Śruba rozprężna		
7	Wywierć otwory w ścianie		

Sekwencja połączeń RJ45 z linią LAN wygląda następująco:

Wykres 5.6

Kolory linii LAN 1-8, jak poniżej:

SZPILKA	1	2	3	4	5	6	7	8
Kolor	Biały pomarańczowy	Pomarańczowy	Biały zielony	Niebieski	Biały niebieski	zielony	Biały brązowy	brązowy

5.3 Instrukcje instalacji

5.3.1 Uwaga Układ (należy wziąć pod uwagę długość czujników) Growatt

SPH4000-10000TL3 BH-UP używaj tylko licznika jako czujnika, przed zainstalowaniem systemu powinieneś wiedzieć następujące rzeczy: 1. Zaleca się, aby kabel licznika nie był dłuższy niż 15 m. Z tego powodu należy wziąć pod uwagę długość kabla między SPH a skrzynką przyłączeniową.

2. Licznik musi być zainstalowany w linii L.

3. Schemat instalacji systemu magazynowania energii w domu wygląda następująco:

Wykres 5.7

5.3.2 Instalacja SPH

1. Najpierw oszacuj rozmiar falownika na ścianie; 2. Określ

lokalizację otworu wiertniczego w tekturze (instrukcja instalacji), połóż tekturę na ścianie i upewnij się, że górna krawędź tektury jest pozioma.

3. Zaznacz cztery punkty na ścianie przez otwór w tekturze, a następnie usuń tekturę.

4. Wywierć cztery otwory Φ8 w punkcie oznaczenia, głębokość nie mniejsza niż 55 mm.

5. Wbić cztery śruby wybuchowe w otwory Φ8 (zgodnie z tabelą 5.8b poniżej).

6. Zawieś urządzenie do magazynowania energii na czterech śrubach ustalających (zgodnie z tabelą 5.8c poniżej).

7. Zablokuj nakrętkę śruby ustalającej (zgodnie z tabelą 5.8d poniżej).

8. Cała instalacja została zakończona.

D)

C)

Wykres 5.8

5.4 Tryb połączenia systemu SPH 5.4.1 Podłączenie zacisku PV

Wykres 5.9

Podobnie jak w przypadku tradycyjnego podłączania inwertera, wprowadzanie energii do panelu fotowoltaicznego można zrealizować za pomocą zacisku MC4 PV. Szczegółowe kroki są następujące: Krok 1: Wyłącz przełącznik PV.

Krok 2: Podłącz dodatni i ujemny kabel panelu PV do zacisku MC4, następnie podłącz biegun dodatni (+) kabla połączeniowego do bieguna dodatniego (+) złącza wejściowego PV, a następnie podłącz biegun ujemny (-) kabla połączeniowego do bieguna ujemnego (-) złącza wejściowego PV.

Proszę zwrócić uwagę na napięcie i prąd wejściowy PV w granicach dozwolonego limitu:

- Ø Maksymalne napięcie PV: 1000 V (należy wziąć pod uwagę najniższą temperaturę)
- Ø Maksymalny prąd wejściowy PV: 13,5 A
- Ø Maksymalna moc wejściowa PV na każdy ciąg: 7500 W.

Uwaga: 1. Do podłączenia zalecamy użycie kabla 4mm2/12 AWG. 2. Nie podłączaj do źródła prądu stałego.

5.4.2 Podłączenie zacisku AC i zacisku poza siecią

SPH ma zacisk wyjściowy do sieci i zacisk wyjściowy poza siecią. Patrząc na SPH z przodu, zacisk po lewej stronie (w siatce) jest gniazdem sieciowym do podłączania sieci, zacisk po prawej stronie jest gniazdem zasilania nieprzerwanego do podłączania obciążenia krytycznego.

Wykres 5.10

Sugerowana długość drutu:

	maksymalna długość kabla					
przekrój przewodu	Growatt SPH 4000 TL3 BH	Growatt SPH 5000 TL3 BH	Growatt SPH 6000 TL3 BH	Growatt SPH 7000 TL3 BH	Growatt SPH 8000 TL3 BH	Growatt SPH 10000 TL3 BH
10AWG	88 m	70 m	59 m	50m	44 m	35 m
12AWG	55 m	44 m	37 m	31 m	27 mln	22 m

Kroki podłączania zacisku wyjściowego AC i zacisku wyjściowego EPS są następujące: Krok 1: Odinstaluj zacisk prądu przemiennego zgodnie z poniższą tabelą.

Wykres 5.11

Krok 2: Przeciągnij kable kolejno przez śrubę dociskową, pierścień uszczelniający, tuleję gwintowaną, włóż kable do zacisku przyłączeniowego zgodnie z biegunowością wskazaną na zacisku i dokręć śruby.

Wykres 5.12

Krok 3: Wsuń tuleję gwintowaną na zacisk przyłączeniowy, aż oba elementy zostaną szczelnie zablokowane.

Wykres 5.13

Krok 4: Podłącz wtyczkę do zacisku wyjściowego prądu przemiennego, obracając ją zgodnie z ruchem wskazówek zegara, aby dokręcić wtyczkę, lub przeciwnie do ruchu wskazówek zegara, aby poluzować wtyczkę.

Screw up AC connector

Release AC connector

Wykres 5.14

Krok 3: Wsuń tuleję gwintowaną na zacisk przyłączeniowy, aż oba elementy zostaną szczelnie zablokowane.

Wykres 5.17

Krok 4: Podłącz gniazdo do zacisku wyjściowego AC, aż zostanie zablokowane. Użyj płaskiego śrubokręta, aby przytrzymać klamrę i wyciągnąć zacisk AC.

Wykres 5.18

Krok 5: Podłącz zacisk AC do portu AC inwertera.

Wykres 5.19

Poniższy diagram przedstawia kroki podłączania zacisku wyjściowego prądu przemiennego maszyny w Australii oraz kroki podłączania zacisku wyjściowego EPS zgodne z krokami powyżej.

Kroki podłączania zacisku wyjściowego AC i zacisku wyjściowego EPS są następujące: Krok 1: Odinstaluj zacisk prądu przemiennego zgodnie z poniższą tabelą.

Wykres 5.15

Krok 2: Przeciągnij kable kolejno przez śrubę dociskową, pierścień uszczelniający, tuleję gwintowaną, włóż kable do zacisku przyłączeniowego zgodnie z biegunowością wskazaną na zacisku i dokręć śruby.

Zalecany schemat okablowania wygląda następująco:

Wykres 5.20

Uwaga:

Ten schemat stanowi przykład systemu sieciowego, który nie ma specjalnych wymagań dotyczących podłączenia przewodów elektrycznych. Przewód neutralny jest konieczny.

Diagram B

Wykres 5.21

Notatka:

Ten schemat stanowi przykład australijskiego i nowozelandzkiego systemu sieci, w którym nie można przełączać przewodu neutralnego. Przewód neutralny jest konieczny.

Wykres 5.22

Notatka:

Ø

Ten schemat stanowi przykład dla klienta, który chce korzystać wyłącznie z systemu magazynowania energii w sieci. Konieczna jest linia neutralna.

Jeśli chcesz używać go tylko na siatce, zapoznaj się z tabelą 5.22 Podłączanie do sieci prądu przemiennego i pływające

wyjście EPS.

Jeśli nie masz teraz akumulatora, możesz także podłączyć terminal BAT, a ten hybrydowy falownik będzie działał tylko jak falownik fotowoltaiczny.

Ø Jeśli chcesz używać zarówno zasilania sieciowego, jak i zapasowego, zapoznaj się z tabelami 5.20 i 5.21. Podłącz do sieci prądu przemiennego i wyjścia EPS tak, jak pokazano na wykresie.

Ø Nie można bezpośrednio łączyć ze sobą terminali podłączonych do sieci i poza nią.

Ø Terminal Off Grid nie może połączyć się z siecią.

Ø Pierwsze uruchomienie systemu wymaga zasilania sieciowego.

Wyjście EPS nie obsługuje urządzeń o obciążeniu półfalowym, takich jak suszarki do włosów.

5.4.3 Podłączenie zacisku akumulatora

Podobnie jak w przypadku tradycyjnego podłączania inwertera, podłączenie akumulatora można zrealizować za pomocą zacisku MC4. Szczegółowe kroki są następujące:

Krok 1: Wyłącz przełącznik baterii.

Krok 2: Podłącz dodatni i ujemny przewód panelu akumulatora do zacisku MC4, następnie podłącz biegun dodatni (+) przewodu połączeniowego do bieguna dodatniego (+) złącza wejściowego akumulatora, a następnie podłącz biegun ujemny (-) przewodu połączeniowego do bieguna ujemnego (-) złącza wejściowego akumulatora.

Proszę zwrócić uwagę na napięcie wejściowe i natężenie prądu akumulatora w granicach dozwolonego limitu:

- Ø Maksymalne napięcie akumulatora: 550 V
- Ø Maksymalny prąd wejściowy akumulatora: 25A

Ø Maksymalna moc wejściowa akumulatora: 10000 W

Uwaga:

Zalecamy użycie kabla 4mm2/10 AWG do podłączenia.

Wykres 5.23

Notatka:

Zalecamy, aby odległość między akumulatorem a SPH nie była większa niż 5 m, a powierzchnia linii zasilającej musi być większa niż 10 AWG.

5.4.4 Podłączenie zacisku licznika

Gdy klient musi użyć licznika do monitorowania przepływu energii, kroki podłączania zacisku licznika są następujące: Krok 1: Odniesienie 5.2, przygotowanie kabli LAN z końcówką RJ45. Krok 2: Nakręć nakrętkę obrotową na kabel LAN. Krok 3: Wyciśnij tuleję podtrzymującą kabel z dławnicy kablowej. Krok 4: Wyjmij korek wlewowy z tulei podtrzymującej kabel. Krok 5: Przeprowadź kabel LAN przez otwór w osłonie kabla. Krok 6: Przeciągnij kabel LAN przez przepust kablowy. Krok 7: Włóż wtyczke RJ45 kabla sieciowego do złącza "METER" w falowniku, aż zatrzaśnie się na swoim miejscu.

Krok 8: Jeśli nie ma potrzeby instalowania żadnych innych kabli, należy przymocować wodoodporną osłonę do falownika za pomocą śrub.

Krok 9: Przykręć nakrętkę obrotową do wodoodpornej pokrywy.

Notatka:

1. Licznik musi być dostarczony przez Growatt. Jeśli nie, licznik może nie komunikować się z falownikiem SPH.

2. Bardziej szczegółowy opis instalacji licznika znajdziesz w instrukcji obsługi licznika.

Wykres 5.25

Uwaga:

Specyfikacja przewodu metrowego (długość 15 m): RJ45, standardowa linia LAN (jeden koniec z wtyczką modułową 8P, drugi podłączony transformatorem). Ale jeśli długość jest niewystarczająca, klient może dodać kabel, więc długość może zostać zwiększona do maks. 25 m, działanie jest następujące:

5.4.5 Podłączenie zacisku komunikacyjnego do akumulatora litowego (CAN)

W przypadku korzystania z komunikacji CAN z bateriami litowymi (na przykład PYLONTECH X1), należy podłączyć

zacisk baterii litowej (RJ45) w następujący sposób:

Krok 1: Odkręć nakrętkę obrotową z przepustu kablowego.

Krok 2: Nakręć nakrętkę obrotową na kabel "CAN".

Krok 3: Wyciśnij tuleję podtrzymującą kabel z dławnicy kablowej.

Krok 4: Wyjmij korek wlewowy z tulei podtrzymującej kabel.

Krok 5: Przeprowadź kabel "CAN" przez otwór w tule
i podtrzymującej kabel.

Krok 6: Przeciągnij kabel "CAN" przez dławik kablowy.

Krok 7: Włóż wtyczkę RJ45 kabla sieciowego do złącza "CAN" w falowniku, aż zatrzaśnie się na swoim miejscu.

Krok 8: Jeśli nie ma potrzeby instalowania żadnych innych kabli, należy przymocować wodoodporną osłonę do falownika za pomocą śrub.

Krok 9: Przykręć nakrętkę obrotową do wodoodpornej pokrywy.

Wykres 5.28

Wykres 5.29

Uwaga: Jeśli używasz akumulatora kwasowo-ołowiowego, nie musisz instalować tego kabla komunikacyjnego.

5.4.6 Podłączenie terminala RS 485

Zastrzeżony interfejs komunikacyjny RS 485, można go używać do komunikacji z licznikiem. Podłącz terminal (RJ45) w następujący sposób:

Krok 1: Odkręć nakrętkę obrotową z przepustu kablowego.

Krok 2: Nakręć nakrętkę obrotową na kabel "RS485".

Krok 3: Wyciśnij tuleję podtrzymującą kabel z dławnicy kablowej.

Krok 4: Wyjmij korek wlewowy z tulei podtrzymującej kabel.

Krok 5: Przeprowadź kabel "RS485" przez otwór w tulei podtrzymującej kabel.

Krok 6: Przeciągnij kabel "RS485" przez dławik kablowy.

Krok 7: Włóż wtyczkę RJ45 kabla sieciowego do gniazda "485-1"

na falowniku, aż zatrzaśnie się na swoim miejscu.

Krok 8: Jeśli nie ma potrzeby instalowania żadnych innych kabli, należy przymocować wodoodporną osłonę do falownika za pomocą śrub.

lub złącze "485-2"

Krok 9: Przykręć nakrętkę obrotową do wodoodpornej pokrywy.

RS485

Wykres 5.30

Wykres 5.31

5.4.7 Podłączenie terminala DRMS (tylko Australia)

W przypadku stosowania systemu SPH w Australii należy podłączyć terminale DRMS. Sposób podłączenia wygląda następująco: Krok 1: Odkręć nakrętkę obrotową z przepustu kablowego. Krok 2: Nakręć nakrętkę obrotową na kabel "DRMS". Krok 3: Wyciśnij tuleję podtrzymującą kabel z dławnicy kablowej. Krok 4: Wyjmij korek wlewowy z tulei podtrzymującej kabel. Krok 5: Przeprowadź kabel "DRMS" przez otwór w osłonie kabla. Krok 6: Przeciągnij kabel "DRMS" przez dławik kablowy. Krok 7: Włóż wtyczkę RJ45 kabla sieciowego do złącza "DRMS" w falowniku, aż zatrzaśnie się na swoim miejscu.

Krok 8: Jeśli nie ma potrzeby instalowania żadnych innych kabli, należy przymocować wodoodporną osłonę do falownika za pomocą śrub.

Krok 9: Przykręć nakrętkę obrotową do wodoodpornej pokrywy.

Wykres 5.32

Wykres 5.33

Przypisanie pinów zacisku RJ45

SZPILKA	zadanie dla falownika zdolnego do ładowania i rozładowywania
1	DRM5
2	DRM6
3	DRM7
4	DRM8
5	RefGen
6	COM/DRM0
7	1
8	1

Metoda potwierdzania trybów reakcji na popyt

Gniazdo	o MODE Rj45 ustawione poprzez zwarcie pinów		Wymóg
DRM0	5	6	obsługiwać urządzenie rozłączające
DRM5	1	5	Nie generuj energii
DRM6	2	5	Nie generuj więcej niż 50% moc znamionowa
DRM7	3	5	Nie generuj więcej niż 75% mocy znamionowej i nie pobieraj mocy biernej, jeśli jest to możliwe.
DRM8	4	5	Zwiększenie wytwarzania energii (z zastrzeżeniem ograniczenia wynikające z innych aktywnych systemów DRM)

Notatka:

Jeżeli nie jest używany kabel, taki jak kabel "NTC" (czujnik temperatury akumulatora kwasowoołowiowego), nie należy wyjmować korka wlewowego z osłony kabla.

5.4.8 Podłączenie sondy temperatury do akumulatora kwasowo-ołowiowego

Gdy klient korzysta z akumulatora kwasowo-ołowiowego, do pomiaru temperatury otoczenia akumulatora kwasowo-ołowiowego używa się sondy temperatury akumulatora. Kroki podłączenia przewodu do pomiaru temperatury akumulatora po stronie SPH są następujące: Krok 1: Odkręć nakrętkę obrotową z przepustu kablowego. Krok 2: Nakręć nakrętkę obrotową na kabel "NTC". Krok 3: Wyciśnij tuleję podtrzymującą kabel z dławnicy kablowej. Krok 4: Wyjmij korek wlewowy z tulei podtrzymującej kabel. Krok 5: Przeprowadź kabel "NTC" przez minimalny otwór w tulei podtrzymującej kabel. Krok 6: Przeciągnij kabel "NTC" przez dławik kablowy. Krok 7: Włóż wtyczkę RJ45 kabla sieciowego do złącza "NTC" w falowniku, aż zatrzaśnie się na swoim miejscu.

Krok 8: Jeśli nie ma potrzeby instalowania żadnych innych kabli, należy przymocować wodoodporną osłonę do falownika za pomocą śrub.

Krok 9: Przykręć nakrętkę obrotową do wodoodpornej pokrywy.

Wykres 5.34

Wykres 5.35

Notatka:

1. Jeśli używasz akumulatora litowego, nie musisz instalować sondy temperatury, sondę kabla temperaturowego należy podłączyć do otoczenia akumulatora kwasowo-ołowiowego. Długość tego kabla wynosi 1,5 m, dlatego należy zwrócić uwagę na odległość akumulatora i SPH.

2. Jeżeli nie jest używany kabel, taki jak kabel "NTC" (czujnik temperatury akumulatora kwasowoołowiowego), nie należy wyjmować korka wlewowego z osłony kabla. 5.4.9 Podłączenie styku suchego

Suchy styk służy do komunikacji z urządzeniami zewnętrznymi (takimi jak zdalny podgrzewacz wody). Kroki okablowania sa nastepujace:

Krok 1: Odkręć nakrętkę obrotową z przepustu kablowego.

Krok 2: Nakręć nakrętkę obrotową na kabel.

Krok 3: Wyciśnij tuleję podtrzymującą kabel z dławnicy kablowej.

Krok 4: Wyjmij korek wlewowy z tulei podtrzymującej kabel.

Krok 5: Przeprowadź kabel sieciowy przez otwór w tulei podtrzymującej kabel.

Krok 6: Przeciagnii kabel sięciowy przez przepust kablowy.

Krok 7: Wprowadź kable do zacisku przyłaczeniowego falownika, następnie dociśnij zacisk odpowiednimi

narzędziami i upewnij się, że kable są dobrze zamocowane.

Krok 8: Jeśli nie ma potrzeby instalowania żadnych innych kabli, należy przymocować wodoodporną osłonę do falownika za pomoca śrub.

Krok 9: Przykręć nakrętkę obrotową do wodoodpornej pokrywy.

Wykres 5.37

Notatka:

1. Jeżeli nie jest używany kabel, np. kabel "Dry contact", nie należy wyjmować zaślepki z tulei podtrzymującej kabel.

2.Styk suchy może dać 12 V i mniej niż 200 mA wyjściowego źródła do przekaźnika sterownika itd. Należy uważać na pojemność tego zasilania.

5.4.10 Podłaczenie uziemienia

SPH musi być uziemiony za pomocą kabla. Punkt uziemienia pokazano poniżej. Minimalna średnica przewodu uziemiającego wynosi 10,0 mm2.

Uziemienie układu fotowoltaicznego

Przewód uziemiający uchwytów paneli PV musi być mocno podłączony do uziemienia po stronie zespołu PV, po stronie falownika i po stronie SP. Powierzchnia przekroju przewodu uziemiającego powinna być równa powierzchni przekroju przewodu uziemiającego DC. Minimalna średnica przewodu wynosi 10,0 mm2.

Uziemienie DC

Należy wybrać tryb uziemienia prądu stałego zgodny z lokalnymi normami i zastosować skrzynkę zaciskową uziemienia PV oraz przewody uziemiające prądu stałego o tej samej specyfikacji.

Urządzenie uziemiające

Jeśli biegun dodatni lub biegun ujemny układu PV musi być uziemiony w systemie PV, wyjście falownika powinno być izolowane za pomocą transformatora izolacyjnego. Transformator izolacyjny musi być zgodny z normą IEC62109-1.-2.

Podłączenie jak poniżej:

6 Uruchomienie

6.1 Uruchomienie SPH

Po zakończeniu instalacji części 5 podłącz SPH do prądu. Oto kroki:

- Ø Podłącz PV
- Ø Podłącz prąd zmienny
- Ø Podłącz akumulator
- Ø Najpierw włącz klimatyzację
- Ø Następnie włącz baterię
- Ø Ostatnie włączenie PV

Jeśli sieć fotowoltaiczna i akumulator są dostępne, system będzie działał w trybie "normalnym". Gdy SPH jest w trybie normalnym, ekran pokazuje "normalny", dioda LED jest zielona, jeśli SPH nie działa w trybie normalnym, zwłaszcza LCD jest czerwony, należy sprawdzić poniżej:

Wyspy Sprawdź, czy wszystkie połączenia są prawidłowe.

- Ø Wszystkie przełączniki zewnętrzne są włączone.
- Ø Wbudowany przełącznik inwertera jest włączony.
- Ø Sprawdź, czy bateria litowa jest włączona.
- Ø W celu uzyskania informacji o korekcie należy zapoznać się z częścią 9.1.

Aby uzyskać informacje na temat ustawień trybu pracy, zapoznaj się z częścią 6.4.4, a następnie skonfiguruj monitor i zakończ uruchomienie.

6.2 Tryby pracy

6.2.1 Tryb normalny

Tryb normalny to stan roboczy obejmujący tryb online i tryb tworzenia kopii zapasowej.

Tryb online

Użytkownik może ustawić odpowiedni tryb priorytetu zgodnie z żądaniem, gdy SPH pracuje w trybie online. Jeśli klient używa ustawień LCD i klawiszy, możesz ustawić tylko jeden okres, ale jeśli używasz ustawień witryny, możesz ustawić do trzech okresów trybu priorytetu. (Zobacz 6.4.4)

Load first: load first to tryb domyślny, gdy pracuje w tym trybie, energia PV będzie oferowana do obciążenia i akumulatora; gdy PV jest niewystarczające, akumulator się rozładuje; gdy PV jest wystarczające do obciążenia, nadmiar energii będzie przesyłany do akumulatora. Jeśli nie ma akumulatora lub akumulator jest pełny, nadmiar energii będzie przesyłany do sieci (oprócz anty-refluksu).

Najpierw bateria: gdy SPH pracuje w tym trybie, akumulator będzie ładowany jako pierwszy, jest odpowiedni do pracy w okresie, gdy ładunek elektryczny jest niski. użytkownik musi ustawić czas WŁĄCZENIA i WYŁĄCZENIA trybu oraz czas zakończenia SOC akumulatora. Użytkownicy mogą ustawić moc, która jest mniejsza niż maksymalna moc wyjściowa akumulatora. Jeśli klient nie włączy AC CHG (funkcje ładowania sieciowego AC). Falownik będzie ładował akumulator za pomocą energii PV tak dużej, jak to możliwe. Jeśli klient włączy AC zieci tak dużej, jak to możliwe.

Najpierw sieć: gdy SPH pracuje w trybie "najpierw sieć", energia z fotowoltaiki będzie najpierw przesyłana do sieci. Użytkownik może wybrać okres, w którym ładunek elektryczny jest wysoki. Użytkownik musi ustawić czas włączenia i wyłączenia trybu oraz czas zakończenia stanu naładowania akumulatora. Użytkownik może ustawić moc mniejszą niż maksymalna moc wyjściowa akumulatora.

Tryb kopii zapasowej

Jeśli Grid zostanie utracony, system przejdzie w tryb zapasowy (użytkownik może go wyłączyć, patrz 6.4.4), a wyjście AC z portu EPS LOAD, cała energia z PV i akumulatora, jeśli PV również zostanie utracone, wówczas tylko rozładowanie akumulatora. Pamiętaj, że maksymalna moc wyjściowa SPH wynosi 10000 W w tym trybie, obciążenie podłączone do EPS LOAD powinno być mniejsze niż 10000 W.

OGŁOSZENIE:

Użytkownik może ustawić na wyświetlaczu LCD tylko jeden okres dla opcji "najpierw bateria, potem siatka". Jeśli chce ustawić więcej okresów, powinien zalogować sie na shineserver.

Jeśli użytkownik potrzebuje akumulatora z funkcją ładowania sieciowego, musi wprowadzić hasło na powierzchni SC i włączyć AC CHG.

6.2.2 Tryb błędu

Inteligentny system sterowania SPH umożliwia ciągłe monitorowanie i regulację stanu systemu. Gdy podczas monitorowania falownika SPH wydarzy się coś nieoczekiwanego, np. awaria systemu lub maszyny, na wyświetlaczu LCD pojawi się informacja o usterce. W trybie awarii zaświeci się dioda LED.

OGŁOSZENIE:

Ø Szczegółowe informacje o usterkach znajdują się w punkcie 9.1

Niektóre informacje o błędach mają na celu przypomnienie użytkownikom, że mogą występować pewne błędy Øwystąpiło po stronie falownika.

6.2.3 Tryb programowania

Tryb programowania wskazuje, że SPH jest w trakcie aktualizacji. Nie odłączaj zasilania podczas aktualizacji, dopóki przetwarzanie się nie zakończy. Falownik SPH wyloguje się automatycznie po zakończeniu aktualizacji i przejdzie w inny tryb.

6.2.4 Tryb sprawdzania

Zanim SPH zacznie działać w trybie normalnym, przejdzie w tryb samokontroli. Jeśli wszystko jest w porządku, system przejdzie w tryb normalny, w przeciwnym razie przejdzie w tryb błędu.

6.2.5 Tryb czuwania

Jeśli w systemie nie wystąpiły żadne usterki, a warunek ten nie został spełniony, SPH pozostanie w trybie gotowości.

Tryb wyłączania

Jeśli klient chce zatrzymać falownik SPH, musi odłączyć wszelkie źródła energii, a falownik SPH automatycznie przełączy się w tryb wyłączenia. Poniżej przedstawiono procedurę wyłączania:

Wyłącz stronę PV

Wyłącz przełącznik baterii.

^{ŘŘŘ6.2}Wyłącz zasilanie AC SPH. Wtedy możesz zobaczyć, że dioda LED i LCD SP są wyłączone. UWAGA: Po

wykonaniu wszystkich czynności należy odczekać jeszcze ponad 5 minut.

6.3 Ustawienia krajowe Growatt

może zapewnić różne regulacje dotyczące urządzenia po otrzymaniu urządzenia przez klienta, w zależności od jego kraju/regionu, za pomocą wyświetlacza LCD w celu ustawienia odpowiednich regulacji. Wybierz odpowiednią opcję podczas instalacji falownika Growatt. Poniżej znajduje się wprowadzenie do wyświetlacza LCD.

Kraj/region	Wyświetlacz regulacji	Wyświetlacz modelu
	VDE0126	GT0XXXXX1
	Niemcy	GT0XXXXX1
	VDE-AR-N4110	(NIEWAŻNY)
	Belgia	GT0XXXXXD
	Polska	GT0XXXXXB
	Francja	GT1XXXXX9
	Hiszpania	GT0XXXXX0
	Austria	GT1XXXXXE
	Dania_DK1	GT1XXXXX7
Model UE	Dania_DK2	GT1XXXXXB
	Szwecja	GT1XXXXX6
	Norwegia	(NIEWAŻNY)
	Szwajcaria	(NIEWAŻNY)
	Bułgaria	(NIEWAŻNY)
	Grecja	GT0XXXXX2
	Estonia	(NIEWAŻNY)
	EN50549	GT1XXXXXD
	Republika Czeska	GT2XXXXX3

	VDE0126	GT0XXXXX1	
	TUNEZJA	(NIEWAŻNY)	
	Ukraina	(NIEWAŻNY)	
	VDE-AR-N4105	GT0XXXXX7	
	IEC62116 i 61727	GT0XXXXXC	
Model ogólny	Republika Południowej Afryki	GT1XXXXXC(NULL)	
	Dubai	(NIEWAŻNY)	
	Chile	(NIEWAŻNY)	
	Argentyna	(NIEWAŻNY)	
	Urugwaj	(NIEWAŻNY)	
	Inni	(NIEWAŻNY)	
	CEI 0-21	GT0XXXXX4	
Włochy	CEI 0-16	(NIEWAŻNY)	
Weary	Weary	GT0XXXXXC	
	G98	GT0XXXXX8	
	G99	GT0XXXXX5	
Weba Bytana	Irlandia	GT1XXXXX3	
	NI G98	(NIEWAŻNY)	
	NI G99	(NIEWAŻNY)	
	AS4777	GT4XXXXX3	
	Nowa Zelandia	GT5XXXXX8	
	Oueensland	GT4XXXXX2	
	AU Victoria	GT4XXXXX1	
	AU Western	GT4XXXXX4	
Australia	AU_Horyzont	GT4XXXXX5	
	AU Ausgrid	GT4XXXXX6	
	AU_Endeavour	GT4XXXXX7	
	AU Ergon Energy	GT4XXXXX8	
	AU Energex	GT4XXXXX9	
	AU w sieci	GT4XXXXXA	
	Brazylia	GT1XXXXX5(NULL)	
Brazylia	Brazylia 240V	(NIEWAŻNY)	
Meksyk	Meksyk	(NIEWAŻNY)	
Indie	Indie	GT1XXXXX4(NULL)	
Korea	Korea	(NIEWAŻNY)	
	Tajwan VPC	GT1XXXXX2(NULL)	
Tajwan	Tajwan TPC	(NIEWAŻNY)	
Tajlandia	RZECZ	GT0XXXXXE	
-	MOŻE	GT0XXXXXF	
Wietnam	Wietnam	(NIFWAŻNY)	
	сос	GT0XXXXXA	
CQC		GT1XXXXX1	
Tajwan Tajlandia Wietnam CQC	Tajwan TPC RZECZ Może Wietnam CQC CQC_1	(NIEWAŻNY) GTOXXXXXE GTOXXXXXF (NIEWAŻNY) GTOXXXXXA GTIXXXXXA	

6.4 Wyświetlacz i przycisk

6.4.1 Obszar wyświetlania LCD

Wykres 6.1

Lokalizacja	Opis
А	Państwo
В	Informacja
С	Wejście PV (jeśli podłączysz dwa tory, pokaże dwa. W przeciwnym razie pokaże jeden)
D	Falownik SPH
I	Linia przepływu mocy
F	Siatka
G	Bateria (pokazuje SOC w pięciu siatkach, każda siatka reprezentuje 20%)
н	Obciążenie lokalne
1	Komunikacja bezprzewodowa
J	RS232
к	RS485
L	Brzęczyk (zarezerwowany)
М	Ostrzeżenie
N	Wada

6.4.2 Instrukcja dotycząca diod LED i przycisków

Lokalizacja	Opis	
A	Status	
В	Przycisk ESC (anulowanie kontroli)	
с	Przycisk w dół	
D	Przycisk Enter	
I	Przycisk W GÓRĘ	

Uwaga:

Dioda LED pokazująca stan SPH, ma dwa kolory, jeden zielony, a drugi czerwony. Przejdź do 3.1 i przeczytaj szczegóły dotyczące diody LED.

6.4.3 Kolumna wyświetlacza LCD

Kolumna wyświetlacza LCD służy do wyświetlania bieżącego stanu, podstawowych informacji i informacji o błędach. Obejmuje również ustawienia języka, priorytet ładowania/rozładowywania programu i czas systemowy. W stanie domyślnym informacje będą wyświetlane na zmianę.

Wykres 6.3

Końcowe informacje linii A są następujące: Ø Stan gotowości:

SPH jest w stanie gotowości. W tym stanie nie ma błędu, ale z innych powodów ustaw go w stanie oczekiwania.

- Ø Stan normalny: SPH jest normalnym stanem roboczym.
- Ø Stan sprawdzania: SPH jest w stanie samosprawdzania, jeśli nie ma błędu ani ostrzeżenia, SPH przejdzie do stanu normalnego lub stanu gotowości. W przeciwnym razie przejdzie do stanu błędu.
- Ø Stan programowania: SPH jest w stanie aktualizacji oprogramowania sprzętowego.
- Ø Stan błędu: SPH ma informacje o błędzie, będzie w stanie zatrzymania działania.

Informacje dotyczące linii B są następujące:

W normalnym przypadku strona będzie przełączana automatycznie po naciśnięciu przycisku "W GÓRĘ", a kolejność informacji o stronicowaniu będzie następująca:

Wykres 6.4

Uwaga:

- ŘŘ Komenda sterująca "w dół" (naciśnięcie przycisku "w górę" spowoduje powrót do polecenia). Tryb pracy zależy od sytuacji. Jeśli SPH jest w stanie normalnym, wyświetli się "normalny". Jeśli SPH jest w stanie gotowości, wyświetli się jako "gotowość" itd.
- Ø Wyjaśniono niektóre specjalne definicje, na przykład: Vb oznacza napięcie baterii. Cb oznacza pojemność baterii litowej (tylko bateria litowa pokazuje te dane). Pm oznacza moc monitora użytkownika.

6.4.4 konfiguracja trybu pracy

Aby wejść na stronę ustawień, naciśnij i przytrzymaj "enter" przez 3 sekundy. Na tej stronie możesz nacisnąć "enter" lub "ESC" przez 1 sekundę, aby zakończyć wybór. Strona wygląda następująco:

Wykres 6.5

Jeśli wybierzesz CEI i użyjesz falownika SPH we Włoszech, falownik SPH będzie miał funkcję Auto Test. Jak korzystać z funkcji Autotest. Zobacz załącznik.

1. W Parametrach Podstawowych możesz zobaczyć poniższe opcje konfiguracji po naciśnięciu Enter przez 1S:

Wykres 6.6

W podstawowym parametrze można ustawić język (angielski, włoski, niemiecki), czas systemowy, napięcie minimalne akumulatora kwasowo-ołowiowego (LV) (napięcie domyślne pojedynczego akumulatora, 11,5 V), prąd ładowania i rozładowania akumulatora kwasowo-ołowiowego (CC) , domyślnie 25A), kwasowo-ołowiowy (maksymalne napięcie pojedynczego akumulatora, 14,5 V), liczbę akumulatorów kwasowo-ołowiowych (napięcie domyślne 12).

2. W obszarze EPS po naciśnięciu Enter przez 1 sekundę możesz zobaczyć poniższe opcje konfiguracji:

Notatka:

1. Gdy EPS wyłączone i pominięte: WYŁ., na porcie EPS nie ma żadnego wyjścia pod żadnymi okolicznościami;

2. Gdy EPS Enable & Bypass jest wyłączone, port EPS nie ma wyjścia, gdy jest sieć energetyczna, a port EPS ma wyjście, gdy nie ma sieci energetycznej i obciążenie musi zostać przełączone przez ATS;

3. Gdy EPS jest wyłączone i pominięte: WŁ., port EPS ma wyjście, gdy jest sieć energetyczna, a port EPS nie ma wyjścia, gdy nie ma sieci energetycznej;

4. Gdy EPS Enable & Bypass: ON, wyjście na porcie EPS jest dostępne w każdych okolicznościach (normalny tryb pracy modeli EU).

5. Gdy przekaźnik N_PE jest włączony, przekaźnik N-PE jest zamknięty w trybie off-grid (w tym momencie linia EPS-N i linia EPS-PE będą połączone), a rozłączony w innych trybach. Gdy przekaźnik N_PE jest wyłączony, przekaźnik N-PE pozostaje otwarty w każdych okolicznościach.

W EPS można ustawić m.in. włączenie lub wyłączenie (domyślnie włączone), napięcie prądu zmiennego (domyślnie 230 V) i częstotliwość (domyślnie 50 Hz).

3. W obszarze Priorytet po naciśnięciu Enter możesz zobaczyć poniższe opcje konfiguracji:

Wykres 6.8

Notatka: Ø

- "Power Rate" służy do ustawiania mocy baterii. Różne baterie mogą mieć różną moc, klient musi sprawdzić maksymalną moc baterii.
- Ø Ustawienie czasu wynosi 24 godziny. Jeśli czas zakończenia jest wcześniejszy niż czas rozpoczęcia, domyślnie ustawiany jest zakres dni.

Wykres 6.7

4. W obszarze Zmiana trybu po naciśnięciu Enter możesz zobaczyć poniższe opcje konfiguracji:

Wykres 6.9

Jeśli chodzi o typ akumulatora, można wybrać akumulator litowy lub akumulator kwasowo-ołowiowy.

5. W ramach DiagnoseFun możesz uruchomić "DiagnoseFun" po zakończeniu instalacji.

Notatka:

1. Po pomyślnym przejściu każdego etapu testu na wyświetlaczu LCD pojawi się komunikat PASS (zaliczony). Należy odczekać 10 sekund, a następnie kontynuować. do następnego testu.

2. Po wykryciu błędu należy nacisnąć przycisk OK, aby wyjść.

3. Po zakończeniu wszystkich testów należy nacisnąć przycisk OK, aby potwierdzić i wyjść.

4. Odłącz PV, EPS, obciążenie, włącz tylko BAT i sieć, a następnie uruchom DiagnoseFun.

Jeśli DiagnoseFun nie powiedzie się, naciśnij przycisk OK i sprawdź poniższą tabelę, aby potwierdzić przyczynę problemu.

Komunikat o błędzie	Opis	Sugestia
Błąd komunikacji Meter1	Błąd komunikacji miernika 1	Sprawdź, czy linia komunikacyjna między licznikiem 1 a falownikiem jest dobra.
BattChrOrDisFail	Akumulator nie ładuje się ani nie rozładowuje normalnie	Sprawdź, czy na wyświetlaczu LCD pojawiają się komunikaty o błędach związanych z akumulatorem lub systemem BMS.
M1AbnormalWire	Błąd okablowania miernika 1	Sprawdź czy kolejność faz linii zasilającej Meter1 jest prawidłowa.
Błąd licznika2Comm	Błąd komunikacji Meter2	Sprawdź, czy linia komunikacyjna między miernikiem 2 a falownikiem jest dobra.

6. Po naciśnięciu Enter, w obszarze Limit eksportu możesz zobaczyć poniższe opcje konfiguracji:

Uwaga:

1. Ustaw ExportLimit ON i SingleExport OFF. Kontrola ExportLimit w całości; 2. Ustaw ExportLimit ON i SingleExport ON. Kontrola ExportLimit w pojedynczej fazie; 3. LoadFstCtrl: Włącz pojedynczą fazę lub włącz trzy fazy. Jeśli ustawiono SiEn, ExportLimit w pojedynczej fazie przy LoadFirst. Ustaw ThEn, ExportLimit w całości przy LoadFirst.

Limit eksportu pozwala użytkownikom kontrolować energię przepływającą do sieci. Jeśli ta funkcja jest włączona, moc dostarczana do sieci będzie równa lub niższa od wartości ustawionej. Celem funkcji Fail Safe jest zapewnienie, że w przypadku awarii dowolnej części ELS, moc czynna eksportowana przez punkt połączenia spadnie do uzgodnionej pojemności eksportowej lub niższej w określonym czasie.

Uwaga:

Wartość domyślna wynosi 00,0%.

Gdy włączona jest funkcja całkowitego zapobiegania cofaniu się przepływu (ExportLimit), funkcja całkowitego zapobiegania cofaniu się przepływu jest aktywna.

Jednofazowy zawór anty-cofałowy działa tylko wtedy, gdy jednocześnie włączone są jednofazowy zawór anty-cofałowy (SingleExport) i całkowity zawór anty-cofałowy (ExportLimit).

7. W ustawieniu RS485 możesz wybrać tryb komunikacji RS485 po naciśnięciu Wchodzić:

Uwaga:

Tryb domyślny nie jest używany.

W trybie ShineMaster SPH przejdzie w tryb równoległy. W tym momencie musi być

wyposażony w SEM-E i nie wymaga podłączenia do licznika.

W trybie Meter2 SPH umożliwia podłączenie dwóch mierników. Jeden służy do odczytu mocy magistrali, a drugi do odczytu mocy innych inwerterów.

W trybie VPP SPH umożliwia dostęp do zewnętrznych kontrolerów w celu wprowadzania odpowiednich ustawień SPH.

8. W ustawieniach Kraju/Obszaru możesz zmienić opcje bezpieczeństwa SPH po naciśnięciu Enter:

Wykres 6.13

Uwaga:

Domyślne przepisy bezpieczeństwa są ustawione w fabryce.

Określ region zgodnie z przepisami bezpieczeństwa obowiązującymi w fabryce. Wyświetlacz LCD może ustawić jedynie odpowiednie przepisy bezpieczeństwa obowiązujące w danym regionie.

9. W ustawieniu Dry Connect możesz kontrolować godziny pracy zewnętrznych podgrzewaczy wody, generatorów diesla i innego sprzętu, ustawiając SPH po naciśnięciu Enter:

Uwaga:

Element ustawień D-Bat w opcji generatora wyświetli różne parametry w zależności od typu podłączonego akumulatora. Min.SOC wyświetli się, gdy podłączony jest akumulator litowy, a Min.Vbat, gdy podłączony jest akumulator kwasowo-ołowiowy.

10. W domyślnym ustawieniu po naciśnięciu Enter możesz zobaczyć poniższe opcje konfiguracji:

Wykres 6.15

Ustawieniem domyślnym jest "przywróć ustawienia domyślne", nie należy go używać, chyba że jest to konieczne.

6.5 Komunikacja

6.5.1 Korzystanie z portu USB-A

Port USB-A służy głównie do aktualizacji oprogramowania sprzętowego. Poprzez połączenie USB możemy szybko zaktualizować oprogramowanie maszyny. USB-A można zobaczyć poniżej:

Uwaga: USB jest używane tylko do aktualizacji oprogramowania sprzętowego. Klient nie może go używać do ładowania.

6.5.2 Wykorzystanie portu 485-1/485-2

Port 485-1/485-2 to rozszerzony interfejs 485 w SPH, który należy używać łącznie z ustawieniem RS485 w menu LCD, aby móc komunikować się z urządzeniami zewnętrznymi.

Wykres 6.17

W trybie ShineMaster schemat okablowania wygląda następująco:

Wykres 6.18

Port 485-1 pierwszego SPH jest podłączony do SEM-E poprzez kabel sieciowy, a port 485-2 jest podłączony do portu 485-1 kolejnego SPH poprzez kabel sieciowy, i tak dalej, aż do ostatniego SPH (SPH można zastąpić innymi falownikami obsługującymi funkcję ShineMaster).

Uwaga: opcja SPH musi być ustawiona na opcję Załaduj najpierw.

W trybie Miernik2 schemat okablowania wygląda następująco:

Jako host, SPH będzie odbierał informacje z dwóch liczników jednocześnie: pierwszy licznik (oryginalny licznik SPH) musi zostać podłączony do magistrali sieciowej, a linia komunikacyjna zostanie podłączona do portu licznika; drugi licznik musi zostać podłączony do wyjścia zacisku falownika, a linia komunikacyjna zostanie podłączona do portu 485-1/485-2.

W trybie VPP schemat okablowania wygląda następująco:

Zewnętrzny kolektor VPP jest podłączony do portu 485-1/485-2 poprzez kabel sieciowy. W tym momencie SPH będzie reagował na odpowiednie instrukcje wydawane przez VPP.

6.5.3 Wykorzystanie portu 485-3

485-3 port jest głównie używany do monitorowania połączenia z komputerem, użytkownicy mogą monitorować, ustawiać parametry i aktualizować oprogramowanie maszyny poprzez połączenie z 485-3 maszyna i komputer, korzystając z oprogramowania shinebus opracowanego przez Growatt. Jeśli potrzebujesz oprogramowania ShineBus, pobierz je z oficjalnej strony internetowej Wzrost.

Wykres 6.22

Schemat okablowania wygląda następująco:

6.5.3 Monitorowanie SPH SPH zapewnia

interfejs RS. Użytkownicy mogą poprzez następujące rozwiązanie komunikacyjne 485 monitorować SPH.

WIFI-X

Uwaga:

Te urządzenia monitorujące można używać tylko z platformą monitorującą Shineserver / shinephone firmy Growatt. Wi-Fi-X / Shinelink są połączone z falownikiem za pomocą interfejsu USB i wykorzystują terminal komputerowy / lub telefon komórkowy do monitorowania danych.

Uruchomienie i wyłączenie systemu SPH 7

7.1 Uruchomienie systemu SPH

Użytkownicy mogą uruchomić falowniki SPH, wykonując następujące czynności: 1. Podłącz się do instalacji fotowoltaicznej.

- 2. Połącz się z siecią.
- 3. Podłącz do akumulatora.
- 4. Włączaj kolejno sieć, akumulator i panele fotowoltaiczne.
- 5. Gdy dioda LED zaświeci się na zielono, na wyświetlaczu LCD pojawią się informacje o pomyślnym uruchomieniu falownika SPH.

7.2 Odłączenie systemu SPH

- 1. Wyłącz wszystkie wyłączniki i przełączniki.
- 2. Odłącz PV.
- 3. Odłącz falownik.
- 4. Odłącz akumulator.
- 5. Podnieś wtyczkę AC.
- 6. Poczekaj, aż diody LED i wyświetlacz LCD zgasną, a następnie wyłącz SPH całkowicie.

8. Zwróć uwagę na środowisko instalacji, konserwację i czyszczenie

Wydajność rozpraszania ciepła jest bardzo ważna, gdy falownik SPH pracuje w środowisku o wysokiej temperaturze, lepsze rozpraszanie ciepła może zmniejszyć prawdopodobieństwo zatrzymania pracy falownika SPH. Falownik serii Growatt SPH bez wentylatora należy do chłodzenia naturalnego, gorące powietrze z górnej części grzejnika, akumulator podłączony, środowisko użytkowania dla IP65, należy zwrócić uwagę na temperaturę środowiska instalacji, aby zapewnić bezpieczeństwo akumulatora i normalną pracę maszyny.

Podczas korzystania z baterii należy zwrócić uwagę na następujące informacje:

Uwaga: Nie wrzucaj baterii do ognia. Baterie mogą eksplodować.

Uwaga: Nie otwieraj ani nie uszkadzaj baterii. Uwolniony elektrolit jest szkodliwy dla skóry i oczu. Może być toksyczny.

Uwaga: Akumulator może stwarzać ryzyko porażenia prądem elektrycznym i wystąpienia dużego prądu zwarciowego. Podczas pracy z akumulatorami należy zachować następujące środki ostrożności:

a) zegarków, pierścionków lub innych metalowych przedmiotów.

b) Używaj narzędzi z izolowanymi uchwytami.

c) Załóż gumowe rękawice i buty.

d) Nie kładź narzędzi ani części metalowych na akumulatorach.

e) Przed podłączeniem lub odłączeniem zacisków akumulatora należy odłączyć źródło ładowania.
f) Określ, czy akumulator jest przypadkowo uziemiony. Jeśli jest przypadkowo uziemiony, odłącz źródło od uziemienia. Kontakt z jakąkolwiek częścią uziemionego akumulatora może spowodować porażenie prądem.
Prawdopodobieństwo takiego porażenia można zmniejszyć, jeśli takie uziemienia zostaną usunięte podczas instalacji i konserwacji (dotyczy sprzętu i zdalnych zasilaczy akumulatorowych, które nie mają uziemionego obwodu zasilania).

Jeżeli falownik SPH nie działa z powodu przegrzania lub zbyt niskiej temperatury, należy rozwiązać problem zgodnie z f

Nastegyjand Meteodiwia kanału powietrznego grzejnika jest uzasadniony, przed montażem wybierz odpowiednie miejsce.

- onumber Q Jeżeli podłączone są akumulatory kwasowo-ołowiowe, należy sprawdzić, czy akumulator NTC jest prawidłowo zainstalowany.
- Ø Sprawdź, czy temperatura akumulatora nie jest zbyt wysoka, zbyt wysoka temperatura akumulatora może również spowodować awarię urządzenia SPH. W tym przypadku należy użyć wentylacji, chłodzenia lub nadal obsługiwać akumulator.
- Ø Jeżeli temperatura jest niska, może również włączyć się zabezpieczenie akumulatora przed niską temperaturą. Akumulator rozpocznie pracę z małym obciążeniem przy niskiej temperaturze wyjściowej. Po powrocie temperatury do normy system będzie mógł pracować normalnie. Prosimy o cierpliwość.
- Ø Jeśli temperatura jest zbyt niska, możliwe, że akumulator zostanie wyłączony z powodu zbyt niskiej temperatury; w tym przypadku należy zwrócić uwagę na zakres temperatur roboczych podany w specyfikacji technicznej książki.
- Ø Czynności serwisowe związane z akumulatorami powinny być wykonywane lub nadzorowane przez personel posiadający wiedzę na temat akumulatorów i wymaganych środków ostrożności.
- arnothing Wymieniając baterie, należy stosować baterie lub zestawy baterii tego samego typu i tej samej liczby.
- Ø Ogólne instrukcje dotyczące wyjmowania i instalowania baterii.

Uwaga:

Wszystkie powyższe czynności powinny być wykonywane przez osobę wykwalifikowaną. Jeżeli chcesz wykonać te prace, musisz upewnić się, że cały system jest wyłączony.

Nasze produkty poddajemy rygorystycznym testom przed ich wypuszczeniem na rynek. W razie wystąpienia trudności w działaniu podczas instalacji prosimy o wejście na stronę internetową www.ginverter.com i zapoznanie się z programem pytań i odpowiedzi.

Jeśli wystąpi usterka falownika SPH, prosimy o poinformowanie naszej firmy. Udzielimy Państwu informacji dotyczących falownika SPH, a nasz personel obsługi technicznej odpowie na Państwa pytania.

Czego potrzebujesz, aby podać informacje o SPH, w tym: Ø

Numer seryjny.

- Ø Model.
- Ø Informacje o wyświetlaczu LCD.
- Ø Krótki opis problemów.
- Ø Napięcie akumulatora.
- Ø Napięcie wejściowe i moc na każdy ciąg modułów fotowoltaicznych.
- Ø Napięcie i częstotliwość sieci.
- Ø Czy możesz opowiedzieć problem awarii? Jeśli możesz, jaka to była sytuacja.
- Ø Czy problem wystąpił w przeszłości?
- Ø Kiedy ta usterka się wydarzyła? Pierwsza instalacja?

A o baterii: Ø

Nazwa producenta i model akumulatora.

- Ø Pojemność akumulatora.
- Ø Napięcie wyjściowe akumulatora.
- Ø Czas zakupu baterii i częstotliwość jej użytkowania.

9.1 Lista informacji o błędach systemowych i sugestie dotyczące rozwiązywania problemów

	Wiadomość ostrzegawcza			
Komunikat o błędzie	Opis	Sugestia		
Ostrzeżenie401	Błąd komunikacji licznika	Sprawdź, czy połączenie przewodowe między licznikiem a falownikiem jest dobre.		
Ostrzeżenie203	Zwarcie obwodu Pv1 lub PV2	1. Sprawdź, czy bieguny dodatni i ujemny wejścia PV są zamienione. 2. Ponownie podłącz zacisk PV. Jeśli ponowne uruchomienie nie rozwiąże problemu, skontaktuj się z serwisem Growatt.		
Ostrzeżenie506	Temperatura akumulatora poza określonym zakresem ładowania lub rozładowywania	Sprawdź, czy temperatura otoczenia akumulatora mieści się w zakresie podanym w specyfikacji.		

Usuwanie usterek 9

AC V Zasięg	Awaria napięcia sieciowego. Więcej szczegółów na temat częstotliwości sieci można znaleźć w lokalnych standardach sieciowych.	 Sprawdź, czy napięcie prądu przemiennego mieści się w zakresie standardowego napięcia podanego w specyfikacji. Sprawdź, czy podłączenie do sieci jest dobre.
AC F Zasięg	Błąd częstotliwości sieci. Więcej szczegółów dotyczących napięcia sieciowego można znaleźć w lokalnych normach sieciowych.	 Sprawdź, czy częstotliwość mieści się w zakresie podanym w specyfikacji. Uruchom ponownie falownik. Jeśli ponowne uruchomienie nie rozwiąże problemu, skontaktuj się z centrum serwisowym Growatt.
Błąd COM BMS	Błąd komunikacji	 Sprawdź, czy bateria litowa jest otwarta. Sprawdź, czy połączenie akumulatora litowego z falownikiem jest dobre.
Odwrócona bateria	Odwrócone zaciski akumulatora	Sprawdź, czy bieguny dodatni i ujemny akumulatora są zamienione.
BAT NTC Otwarte	NTC otwarte (tylko dla akumulatorów kwasowo-ołowiowych)	 Sprawdź temperaturę akumulatora kwasowo-ołowiowego czy jest zainstalowany. Sprawdź temperaturę akumulatora kwasowo- ołowiowego, czy jest on prawidłowo podłączony.
Otwarta bateria	Otwarty zacisk akumulatora (tylko dla baterii litowej)	 Sprawdź, czy połączenie akumulatora jest dobre. Sprawdź, czy wszystkie przełączniki między akumulatorem a falownikiem są włączone.
Przeciążenie	Ostrzeżenie o przeciążeniu wyjścia EPS. Jeśli to ostrzeżenie wystąpiło trzy razy. Funkcja Off-grid zostanie zablokowana na godzinę i ponownie wyjściowa moc.	Proszę zmniejszyć obciążenie wyjścia EPS.
Brak połączenia AC	Brak użyteczności	 Potwierdź, czy siatka została utracona lub nie. Sprawdź, czy podłączenie do sieci jest dobre. Sprawdź, czy przełączniki na kablu są włączone.
Wyjście wysokie DCI	Prąd wyjściowy DC jest za wysoki. Należy zapoznać się z lokalnymi normami sieciowymi dotyczącymi czasu rozłączenia, jeśli wyjściowy prąd stały jest zbyt wysoki.	1. Uruchom ponownie falownik. 2. Jeśli ponowne uruchomienie nie rozwiąże problemu, skontaktuj się z centrum serwisowym Growatt.

Wysokie napięcie bat	Napięcie akumulatora wyższe niż 560 V	1. Sprawdź, czy napięcie akumulatora mieści się w zakresie podanym w specyfikacji. 2. Sprawdź, czy połączenie akumulatora jest prawidłowe. Jeśli napięcie akumulatora jest rzeczywiście wyższe niż 560 V, odłącz połączenie akumulatora i sprawdź falownik.
Niskie napięcie baterii	Napięcie akumulatora niższe niż 100 V	 Sprawdź rzeczywiste napięcie akumulatora. Sprawdź, czy przewody akumulatora i falownika są dobre.
Ostrzeżenie BMS:XXX	Ostrzeżenie raportu BMS	 Sprawdź ostrzeżenia zawarte w instrukcji obsługi baterii litowej. Jeśli ponowne uruchomienie nie rozwiąże problemu, skontaktuj się z centrum serwisowym Growatt.
Błąd BMS:XXX	Błąd raportu BMS	 Sprawdź ostrzeżenia zawarte w instrukcji obsługi baterii litowej. Jeśli ponowne uruchomienie nie rozwiąże problemu, skontaktuj się z centrum serwisowym Growatt.
Niskie napięcie EPS	Niskie napięcie wyjściowe EPS	 Sprawdź obciążenie EPS. Jeśli wystąpiło przeciążenie, zmniejsz obciążenie. Ponownie uruchom falownik.

Komunikat o błędzie			
Komunikat o błędzie	Opis	Sugestia	
Błąd 411	Nie udało się komunikować wewnętrznie	1. Uruchom ponownie falownik. 2. Jeśli ponowne uruchomienie nie rozwiąże problemu, skontaktuj się z centrum serwisowym Growatt.	
Błąd 418	Niezgodność wersji oprogramowania DSP i COM, błąd systemu.	 Odczytaj wersję oprogramowania DSP i COM z wyświetlacza LCD lub shinebus. Sprawdź czy oprogramowanie sprzętowe jest prawidłowe. 	
Błąd 303	Odwrócony falownik LN lub awaria uziemienia	 Sprawdź, czy połączenia paneli fotowoltaicznych i falownika są prawidłowe. Sprawdź, czy PE falownika jest dobry. 	
Błąd 405	Błąd przekaźnika	1. Uruchom ponownie falownik. 2. Jeśli ponowne uruchomienie nie rozwiąże problemu, skontaktuj się z centrum serwisowym Growatt.	

Wycofanie ze służby 11

Błąd 407	Autotest nie powiódł się (tylko we Włoszech)	1. Uruchom ponownie falownik. 2. Jeśli ponowne uruchomienie nie rozwiąże problemu, skontaktuj się z centrum serwisowym Growatt.
Izolacja PV niska	Izolacja PV zbyt niska	 Sprawdź, czy połączenia paneli fotowoltaicznych i falownika są prawidłowe. Sprawdź, czy PE falownika jest dobry.
Krótki błąd OP	Zwarcie wyjścia EPS	1.Sprawdź obciążenie EPS. 2.Sprawdź wynik EPS. Szczególnie nie podłączać do sieci.
Otwarte NTC	Nieprawidłowa temperatura wewnętrzna	Prosimy o kontakt z centrum serwisowym Growatt
Błąd 406	Konfiguracja modelu nie spełnia wymogów certyfikacji	Proszę sprawdzić zestaw modelu lub sprawdzić ustawienia DIP
Pozostały I Wysoki	Prąd upływu jest zbyt wysoki	 Sprawdź kabel falownika. Uruchom ponownie falownik. Jeśli ponowne uruchomienie nie rozwiąże problemu, skontaktuj się z centrum serwisowym Growatt.
Błąd 408	Temperatura poza zakresem	Sprawdź, czy temperatura mieści się w zakresie podanym w specyfikacji albo nie.
Wysokie napięcie PV	Napięcie PV wyższe niż w karcie katalogowej	Sprawdź, czy napięcie wejściowe PV mieści się w zakresie podanym w specyfikacji.

11.1 Demontaż magazynu energii

1. Odłącz falownik SPH w sposób opisany w rozdziale 7.

2. Odłączyć górny kabel falownika SPH.

Uważaj na ciepło skorupy SPH i unikaj poparzeń Poczekaj 20 minut, aż SPH ostygnie i dopiero wtedy przystąpij do demontażu!

3. Odkręć wszystkie kable połączeniowe.

4. Odkręć grzejnik i śrubę mocującą urządzenie do ściany, a następnie zdejmij urządzenie ze ściany.

11.2 Pakowanie falownika SPH

Zwykle umieszczany falownik SPH w pudełku pakunkowym z taśmą uszczelniającą. Jeśli falownik SPH nie może zostać ponownie zajęty, możesz wybrać tani karton do pakowania. Wymagania dotyczące kartonu muszą odpowiadać rozmiarowi falownika i być w stanie utrzymać całkowitą wagę maszyny do magazynowania energii.

11.3 Przechowywanie falownika SPH

Przechowuj falownik SPH w suchym miejscu, w którym temperatura otoczenia będzie wynosić od -25°C do +60°C.

11.4 Utylizacja falownika SPH

Nie wyrzucaj falownika SPH razem z odpadami domowymi. Postępuj zgodnie z przepisami dotyczącymi utylizacji odpadów elektronicznych, które obowiązują w miejscu instalacji w danym momencie. Upewnij się, że stara jednostka i, w stosownych przypadkach, wszelkie akcesoria zostaną zutylizowane w odpowiedni sposób.

10 Deklaracja zgodności UE

W zakresie dyrektyw UE:

•Dyrektywa niskonapięciowa (LVD) 2014/35/UE

•2014/30/UE Dyrektywa w sprawie kompatybilności elektromagnetycznej (EMC)

•Dyrektywa RoHS 2011/65/UE i jej nowelizacja (UE) 2015/863

Firma Shenzhen Growatt New Energy Technology Co. Ltd potwierdza, że falowniki i akcesoria Growatt opisane w niniejszym dokumencie są zgodne z wyżej wymienionymi normami.

Dyrektywy UE. Całą Deklarację Zgodności UE można znaleźć na stronie www.ginverter.com.

12 Specyfikacja produktu

12.1 Specyfikacja produktu maszyny do magazynowania energii serii Growatt SPH

Model	SPH 4000 TI3 BH-UP	SPH 5000 TI3 BH-UP	SPH 6000 TI3 BH-UP	SPH 7000 TI3 BH-UP	SPH 8000 TI3 BH-UP	SPH 10000 TI3 BH-UP
Specyfikacje						
Dane wejściowe (DC)						
Maksymalna zalecana moc PV (dla modułu STC)	6000 W 7500	W 9000 W 10500	W 12000 W 1500	o w		
Maksymalne napięcie DC	1000 V	1000 V	1000 V	1000 V	1000 V	1000 V
Napięcie początkowe	120 V	120 V	120 V	120 V	120 V	120 V
Napięcie znamionowe	600 V	600 V	600 V	600 V	600 V	600 V
Zakres napięcia MPP	120~1000 V 120	~1000 V 120~100	V 120~1000 V 1	20~1000 V 120~1	000 V	
Liczba trackerów MPP	2	2	2	2	2	2
Liczba ciągów PV na trackery MPP	1	1	1	1	1	1
Maksymalny prąd wejściowy na MPP	1 3 45 1 3 45	13,5A/ 13,5A	13,5A/ 13,5A	13,5A/ 13,5A	13,5A/ 13,5A	13,5A/ 13,5A
Maksymalny prąd	160	16.9.4/	16.9 <i>M</i> //	16.94/	16.94/	16.94/
zwarciowy na trackery MPP	16.9	16,9A	16,9A	16,9A	16,9A	16,9A
Dane wyjściowe (AC)						
Moc znamionowa prądu przemiennego	4000W 5000	v 6000W 7000W 8	000W 10000W			
Maksymalna moc pozorna prądu przemiennego	4000VA 5000\	/A 6000VA 7000V/	4 8000VA			10000VA
Napięcie/zakres znamionowy prądu przemiennego	230V/400V; 310~476V					
Częstotliwość/zakres sieci AC	50/60 Hz; 45 ~ 55 Hz/55 ~ 65 Hz					
Maksymalny prąd wyjściowy	6.1A	7,6A	9.1A	10,6A	12.1A	15,2A
Współczynnik mocy (@moc znamionowa)	1					
Regulowany współczynnik mocy	0,8 wiodące ~ 0,8 opóźnione					
THDI	<3%					
Typ połączenia sieciowego AC	3W+N+PE					
Samodzielny (zasilanie prądem zmiennym)						
Moc znamionowa prądu przemiennego	4000W 5000	w 6000W 7000W	8000W 10000W			
Maksymalna moc pozorna prądu przemiennego	4000VA 5000\	A 6000VA 7000VA	8000VA			10000VA
Napięcie znamionowe prądu przemiennego	230V/400V					
Częstotliwość znamionowa prądu przemiennego	50/60Hz					
Maksymalny prąd wyjściowy	6.1A	7,6A	9.1A	10,6A	12.1A	15,2A

THDV	< 3%					
Czas przełączania	< 10ms					
Dane akumulatora (DC)						
Zakres napięcia akumulatora	100~550 V					
Maksymalny prąd ładowania/rozładowania			25A	A		
Ciągła moc ładowania/ rozładowywania	4000 W	4000 W 5000W 6000W 7000W 8000W 10000W				
Rodzaj baterii		akumul	ator litowy / akumi	ulator kwasowo-oł	łowiowy	
Pojemność baterii			7,68 ~ 7	6,8 kWh		
Efektywność						
Maksymalna wydajność	97,6%	97,8%	98,0%	98,2%	98,2%	98,2%
Euro i	97,0%	97,2%	97,3%	97,4%	97,4%	97,5%
MAKS. Wydajność ładowania/rozładowywania akumulatora	97,4%	97,4%	97,4%	97,4%	97,4%	97,4%
Urządzenia ochronne						
Zabezpieczenie przed odwrotną polaryzacją prądu stałego	Tak					
Zabezpieczenie przed odwrotnym podłączeniem akumulatora	Tak					
Przełącznik prądu stałego	Tak					
Ochrona przeciwprzepięciowa DC	Тур II					
Monitorowanie rezystancji izolacji	Tak					
Ochrona przeciwprzepięciowa AC	Тур II					
Zabezpieczenie przeciwzwarciowe AC	Tak					
Monitorowanie uszkodzeń uziemienia	Tak					
Monitorowanie sieci	Tak					
Ochrona przed wyspiarstwem	Tak					
Jednostka monitorująca prąd różnicowy	Tak					
Dane ogólne						
Wymiary (szer./wys./gł.)	544*505*198,5 mm					
Waga	33 kg					
Zakres temperatury roboczej	[–] 25 °C ~ +60 °C (–13 °F ~ +140 °F) Przy obniżeniu mocy powyżej 45 °C (113 °F)					

Emisja hałasu (typowa)	35 dB(A)	
Wysokość	3000m	
Samo-konsumpcja	<13W	
Topologia	Beztransformatorowy	
Chłodzenie	Naturalny	
Stopień ochrony	IP65	
Wilgotność względna	0~100%	
Połączenie prądu stałego	H4 / MC4 (opcjonalnie)	
Podłączenie prądu zmiennego	Złącze	
Podłączenie akumulatora	H4 / MC4 (opcjonalnie)	
Interfejsy		
Wyświetlacz	LCD+LED	
RS485/CAN/USB	Tak	
Łączność radiowa/Wi-Fi/GPRS/4G	fakultatywny	
Gwarancja: 5 / 10 lat	tak / opcjonalnie	
Certyfikaty i homologacje		
Regulacja sieci	IEC 62040, VDE-AR-N 4105, VDE 0126, UTE C 15-712, C10/C11, EN50549, CEI 0-21, CEI 0-16, IEC62116, IEC61727, AS/NZS4777 G98, producent TOR	
Registed extremelyine	PN-EN61000-6-1, PN-EN61000-6-3	
Bezpieczeństwo	IEC/EN62109-1, IEC/EN62109-2	

12.2 Specyfikacja parametru zacisku wejściowego DC Mc4:

	2,5 mm2/14 AWG 4 mm2/	12 AWG 6 mm2/10 AWG 10 i	mm2/8 AWG	
Prąd znamionowy (temperatura otoczenia 90°C)	32A	40A	44A	65A
Napięcie znamionowe systemu	1000 V prądu stałego (UL) 1000 V prądu stałego (TUV)			
Rezystancja styku	0,25 mΩ (model)			
Stopień ochrony	IP68			

Materiały stykowe gniazd	Miedź, cyna
Materiały izolacyjne	Tworzywa termoplastyczne UL94 V-0
Zakres temperatur otoczenia	-40°C do +90°C
Długość zdejmowania izolacji z przewodu	7,0 mm (9/32)
Średnica osłony kabla	4,5 do 7,8 mm (3/16: do 5/16")

12.3 Moment obrotowy

Śruby pokrywy górnej	1,3 Nm (10,8 1bf.in)
Powłoka	0,7 Nm (6,2 1bf.in)
Złącze prądu stałego	1,8 Nm (16,0 1bf.in)
Śrubokręt M6	2 Nm (18 1bf.in)
Śruba uziemiająca	2 Nm (18 1bf.in)

12.4 Załącznik

Poniższa tabela przedstawia listę opcjonalnych dodatków do urządzeń do magazynowania energii. W razie potrzeby prosimy o kontakt z firmą Growatt New Energy Technology Co., Ltd lub z dealerem. (Numer części jest podany wyłącznie w celach informacyjnych i może ulec zmianie).

Nazwa	Opis	Nr części GROWATT
Łacze Shine	Używane do rejestrowania danych w UE	MR00.0011200
Liquic Brinne	Używany do rejestrowania danych w Australii	MR00.0011300
To jest Wi-Fi	Używane do zapisu danych	MR00.0011000
GPRS	Używane do zapisu danych	MR00.0011801

13 Certyfikat

Falowniki serii Growatt SPH mają zastosowanie na całym świecie, dlatego muszą spełniać różne standardy bezpieczeństwa w różnych krajach i regionach.

Model	Certyfikat
Seria Growatt-SPH	IEC 62040, VDE-AR-N 4105, VDE 0126, UTE C 15-712, C10/C11, EN50549, CEI 0-21, CEI 0-16, IEC62116, IEC61727, AS/NZS4777 , G98, generator TOR, EN61000-6- 1, EN61000-6-3, IEC/EN62109-1, IEC/EN62109-2

Załącznik:

AutoTest (tylko dla Włoch)

Poniżej znajduje się tabela Auto Test, patrz 6.4.4. w ustawieniach powierzchni "Auto Test". Naciśnij klawisz "enter", upewnij się, że uruchomisz auto test, naciskając klawisz "enter" przez 3 sekundy. Na wyświetlaczu LCD pojawi się następujący komunikat.

14 Kontakt

Jeśli masz problemy techniczne z naszymi produktami, skontaktuj się z linią serwisową Growatt lub dealerem. Potrzebujemy następujących informacji, aby zapewnić Ci niezbędną pomoc:

1. Numer seryjny falownika SPH.

2. Informacje o module inwertera SPH.

3.Tryb komunikacji falownika SPH.

4. Kod informacyjny o błędzie falownika SPH.

5.Inwerter SPH Wyświetla zawartość.

6. Producent i model akumulatora.

7.Pojemność baterii i tryb połączenia.

Shenzhen Growatt New Energy Co., Ltd 4-13/F, Budynek

A, Chińsko-Niemiecki (Europa) Park Przemysłowy, Hangcheng Ave, Dzielnica Bao'an, Shenzhen, Chiny T +86 0755 2747 1942 service@ginverter.com

-

I www.ginverter.com

W